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KINETIC VISCOELASTICITY FOR THE DYNAMIC 
MECHANICAL PROPERTIES OF POLYMERIC SYSTEMS 

STEVEN H. DILLMAN and JAMES C. SEFERIS* 

Polymeric Composites Laboratory 
Department of Chemical Engineering 
University of Washington 
Seattle, Washington 98195 

ABSTRACT 

A quantitative description for the dynamic mechanical properties of a 
reacting system as a function of both the viscoelastic and kinetic intrin- 
sic behavior of the polymeric system was developed in this work. The 
model was tested experimentally by subjecting plaques of tetraglycidyl- 
4,4’-diaminodiphenylmethane partially cured with diaminodiphenyl 
sulfone to dynamic mechanical measurements at four isothermal tem- 
peratures. The kinetic viscoelasticity model was used to analyze the 
resulting data and to obtain both the characteristic intrinsic kinetic 
and viscoelastic parameters. The effects of temperature on the model 
parameters were investigated. Activation energies provided by the 
model for the curing reaction were found to agree with those obtained 
experimentally by other techniques. Experimental frequency was found 
to be an important factor in the kinetic analysis of dynamic mechanical 
data of curing systems. Finally, the analogy between dielectric relaxa- 
tion and dynamic mechanical relaxation was found to be exploitable in 
developing modeling methodologies and analysis techniques applicable 
to both. 

*To whom correspondence should be addressed. 
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228 DILLMAN AND SEFERIS 

INTRODUCTION 

Dynamic mechanical analysis is commonly used in the characterization of 
polymeric materials. Considerable work has been performed in order to under- 
stand the viscoelastic behavior of nonreacting polymeric materials, and several 
models have been proposed to describe such behavior [ 1-51. However, in 
many situations, such as the cure of composite parts, the structure, and there- 
fore the viscoelastic behavior of the material, are changing with time. Several 
methods are available for describing the kinetics of reacting polymer systems 
[6, 71, and there have been several attempts to extract kinetic information 
from dynamic mechanical and ultrasonic data [8,9]. However, no compre- 
hensive model has yet been formulated that provides a complete description 
of the dynamic mechanical behavior of a curing material. Accordingly, this 
work provides a model describing the dynamic mechanical properties of react- 
ing polymeric systems. 

It is well known that the dynamic mechanical behavior of polymeric mate- 
rials is strongly dependent on the frequency of oscillation [ 1,2]. Models of 
reaction kinetics based on dynamic mechanical data have typically ignored 
the effects of test frequency, however. For this reason, kinetic parameters ex- 
tracted from such models are frequency dependent and must be used with 
caution when applied to process description in the manufacture of polymeric 
parts. 

In this work, viscoelastic and kinetic models are combined to form a visco- 
elastic model with time-dependent reaction parameters. The model is then 
demonstrated by describing isothermal dynamic mechanical data for a curing 
epoxy system consisting of tetraglycidyl-4,4’-diaminodiphenylmethane 
(TGDDM) epoxy cured with 35 parts per hundred diaminodiphenylsulfone 
(DDS). This is a model system which approximates a widely used high-perfor- 
mance matrix system for composites and whose kinetic behavior has been 
well characterized by other techniques [6,7]. The effect of frequency and 
temperature on the model parameters and exhibited viscoelastic behavior of 
the model reacting polymeric system was investigated. Finally, implications 
toward extension of this development to nonisothermal conditions, described 
in detail in a separate communication, are also provided here for complete- 
ness [ 101. 

EXPERIMENTAL 

Samples used in this study were plaques made from a mixture consisting 
of TGDDM cured with 35 phx DDS. Mixing of the epoxy resin was performed 
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according to the procedure of Chu and Seferis as follows [ 111 : TGDDM and 
DDS were weighed out in the desired proportion. The TGDDM was placed in 
a beaker and heated in an oil bath to 135°C where it was held for 10 min. 
The DDS was then added slowly with vigorous mixing over a period of 10 min. 
Mixing continued for 10 min after the addition of DDS was complete. The 
resin was then removed from the oil bath, placed in a sealed glass container, 
and stored in a freezer at -10°C until used. 

Prior to molding, the resin was degassed at 121°C under vacuum for 30 
min. The resin was then poured into an aluminum mold which was lined with 
Du Pont Kapton film that had been coated with a release agent. The mold 
was then placed into an oven preheated to 177°C. The temperature of the 
oven dropped to about 135°C when the mold was placed into it and required 
about 35 min to return to 177°C. An additional 40 min of cure was required 
to obtain a gelled plaque. 

The partially cured plaque was cut into 4 samples, each having dimensions 
of approximately 2.5 X 1.2 X 0.2 cm. Each sample was mounted in the hori- 
zontal clamp assembly of a Du Pont 982 dynamic mechanical analyzer (DMA) 
operating in conjunction with the Du Pont 1090 thermal analyzer. 

The DMA had been calibrated according to the recommended procedures 
using the manufacturer's DMA calibration software. Calibration procedures 
included determination of  1) the damping constant, a scaling parameter for 
the damping signal; 2) the instrument series compliance, a correction for error 
introduced by the compliance of the instrument; 3) the length correction fac- 
tor, a parameter added to the sample length to account for clamping effects. 

Dynamic mechanical tests were performed at four isothermal temperatures: 
140, 167, 180, and 218°C. An oscillation amplitude of 0.2 mm was used. At 
this level, computed moduli are essentially independent of oscillation ampli- 
tude, implying that the sample behaves like a linearly viscoelastic material. In 
each case the sample was heated to the desired temperature at a rate of 20"C/ 
min and held there until the complex modulus attained a constant value, indi- 
cating the completion of any detectable reaction. 

Dynamic mechanical data are commonly expressed in several forms, all of 
which may be easily interrelated. Previously developed kinetic models for 
dynamic mechanical data have universally failed to provide a complete de- 
scription of dynamic mechanical properties. For this reason it is necessary 
to provide a brief review of the methods of description of such properties. 

The dynamic mechanical modulus, W ,  is defined as the ratio of an ap- 
plied sinusoidal stress, u*, to the resulting sinusoidal strain, e*, in the mate- 
rial being tested. Typically, M* is a complex quantity expressed as follows 
[12, 131 : 
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230 DILLMAN AND SEFERIS 

where M’ = the storage modulus, a measure of the stress stored in the sample 

M” = the loss modulus, a measure of the stress dissipated as heat 
I M* I = the magnitude of the dynamic mechanical modulus 
6 = the phase lag between the applied stress and the strain response 

as mechanical energy 

Thus, the dynamic mechanical modulus may be expressed by using either the 
stroage and loss moduli, M‘ and M”, or the magnitude and loss factor, IW I 
and tan 6. Equations (1)-(3) apply regardless of whether the modulus in ques 
tion is a tensile, shear, or flexural modulus, denoted E, G, and F, respectively. 

In contrast, dynamic mechanical data may also be expressed in terms of 
complex compliance, J*, defined as the reciprocal of the complex modulus 
[ 141 : 

where J’ = the storage compliance 
J” = the loss compliance 
I J* I = the magnitude of the complex compliance 

Thus, dynamic mechanical data may also be reported in terms of storage and 
loss compliances, J‘ and J”,  or compliance magnitude, I J* I, and loss factor, 
tan 6. Equations (1)-(8) apply to moduli and compliances determined from 
any dynamic mechanical instrument, regardless of sample geometry [ 131. 

Finally, dynamic mechanical data may also be expressed in terms of the 
complex dynamic viscosity, p*, most commonly in the case of “liquid” 
systems: 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
2
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



KINETIC VlSCOELASTlClTY OF POLYMERIC SYSTEMS 23 1 

pr = M”/u, 

1.1” = M f / u ,  

lP* I = IW I/O. 

It should be noted, however, that all  of these methods of reporting data are 
equivalent. With knowledge of any two parameters, the others may be obtained 
by using the defining Eqs. (I)-( 12). Therefore, a complete model must describe 
two quantities from which the others may be obtained. 

RESULTS AND DISCUSSION 

Typical plots of the storage and loss moduli of the TGDDM/DDS plaques as 
a function of time during an isothermal cure are given in Fig. 1. The storage 
modulus curve displays a sigmoidal shape while the loss modulus exhibits a peak 
followed by a decrease toward an asymptotic limit. This behavior, which has 
also been observed by other investigators during modulus measurements of 
curing epoxy systems, may be attributed to the hindering of molecular motions 
by crosslinks within the sample as it cures [ 151. As the molecular motions be- 
come more restricted, the relaxation time of the sample increases. Similar be- 
havior may be observed as a function of decreasing temperature, and therefore 
increasing relaxation time, for a nonreacting system [ 1, 21. 

The mean relaxation time, T, may be def ied as the reciprocal of the fre- 
quency, 0, at the point where the loss modulus reaches a maximum. For a 
frequency scan of a nonreacting system, the mean relaxation time remains con- 
stant and the loss peak corresponds to the point where the frequency passes 
through 1 / ~ .  For a temperature scan at constant frequency, the relaxation 
time decreases with increasing temperature and the loss peak corresponds to the 
point where 1 / ~  passes through the frequency. This is equivalent to the time- 
temperature superposition concept [3]. In a curing system undergoing a vari- 
able-frequency experiment, both the frequency and the mean relaxation time 
are changing. However, the effect on the systems behavior can be viewed from 
within the same framework. As the sample cures, the relaxation time increases 
from a level such that OT < 1 to a value such that OT > 1, which gives rise to 
the observed peak in the loss modulus at OT = 1. To describe this behavior 
quantitatively, the kinetic effect of the cure reaction on the viscoelasticity of 
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the system must be determined. This is the intention of the model de- 
veloped in this work. 

Modeling Approach 

Previous attempts to model dynamic mechanical behavior of curing systems 
have concentrated on describing one quantity, usually the storage modulus, M', 
where two are required for a complete description. Typical studies on solid 
specimens focus on the storage modulus while ignoring the loss modulus, M" 
[8 ,9] .  Studies of early cure generally focus on the magnitude of the dynamic 
viscosity, I p* I, ignoring tan 6 [ 161 . However, a complete model must de- 
scribe the behavior of two of these quantities from which the others may be 
calculated. This is accomplished through the use of a viscoelastic model as a 
foundation, accounting explicitly for both the frequency and temperature de- 
pendence of the material properties. The effect of cure is introduced by allow- 
ing appropriate parameters of the viscoelastic model to be functions of the 
cure kinetics of the system of interest. Thus, the key to the development of 
a successful model becomes the determination of an appropriate relationship 
between a viscoelastic model and a kinetic model. 

This is similar to a constitutive approach taken in describing the complex 
dielectric constant and viscosity of curing thermosets [ 16, 171. Viscoelastic 
and dielectric relaxation phenomena are analogous in many respects, includ- 
ing not only the analogous equations used in their description, but also with 
respect to the molecular origins of the motions which give rise to them [ 1, 181. 
Table 1 provides an outline of the analogous description of dynamic mechani- 
cal and dielectric phenomena. This analogy is exploited here in the develop- 
ment of a dynamic mechanical model. 

Viscoelastic Model 

In general, the dynamic mechanical behavior of a nonreacting system is a 
function of the quantity wr, where w is the measurement frequency and r is 
the relaxation time of the system [ 1, 21. The effect of temperature is ac- 
counted for by a decrease in the relaxation time with increasing temperature, 
For a polymer having a single relaxation, the dynamic mechanical properties 
as a function of or are as follows: at low values of wr (<< l), the storage 

FIG. 1. Dynamic mechanical shear modulus of curing TGDDM/35 phr 
DDS plaque at 2 18OC and resonant frequency. The solid line is the result 
of fit to model. (a) Storage modulus. (b) Loss modulus. 
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modulus is roughly constant at its minimum value, known as the relaxed 
modulus, and the loss modulus is small but increases with WT; at intermediate 
values of o r  (on the order of l), the storage modulus increases rapidly with 
7, and the loss modulus first increases rapidly, attains a maximum, and then 
decreases rapidly with OT; at large values of wr (>> l), the storage modulus 
remains roughly constant at its maximum value, known as the unrelaxed 
modulus, and the loss modulus again becomes small and continues to de- 
crease with increasing w ~ .  The storage compliance behaves opposite to the 
storage modulus in that the relaxed compliance (low OT) is the maximum 
value and the unrelaxed compliance (high W T )  is the minimum. The loss com- 
pliance behaves much the same as the loss modulus except that the transition 
region is at lower values of WT. The quantity T may be defined based on the 
transition in compliance, in which case it is known as the retardation time. 

The success of our dielectric model for curing systems using an analogous 
constitutive equation as well as the successful use of a similar relation in the 
modeling of viscoelastic behavior of a nonreacting system leads us to propose 
the following viscoelastic model as a constitutive relation for the description 
of dynamic mechanical data of both reacting and nonreacting systems [4, 
17, 191: 

J* = J’ - U” = Ju t (Jr - Ju)/ [ 1 t ( i ~ r ) ~ ]  a, 

where Ju = the unrelaxed compliance 
J,. = the relaxed compliance 
w = the experimental frequency 
T = the mean retardation time 
p = a parameter ranging from 0 to 1 that accounts for a symmetric 

cr = a parameter ranging from 0 to 1 that accounts for an asymmetric 
retardation time distribution 

retardation time distribution 

The relaxed compliance, Jr, represents the compliance of the material at 
low frequency or high temperature, when the sample is relatively flexible. 
The unrelaxed compliance, Ju, represents the compliance at high frequency 
or low temperature, when the sample is relatively stiff. The parameters (Y 

and allow for the nonideality of the system by accounting for distributions of 
retardation times. 

Several commonly used viscoelastic models are obtained from Eq. (13) by 
a suitable choice of parameters. If both (Y and are set equal to 1, the model 
reduces to the Standard Linear Solid model, an ideal model with a single relax- 
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236 DILLMAN AND SEFERIS 

ation/retardation time, which has been used extensively in describing qualita- 
tively the behavior of solid nonreacting systems [ 1,2]. Further assumptions 
reduce the model to other viscoelastic functions. For example, if Ju = 0, one 
obtains the Voigt model [2]. Similarly, if the equation is expressed in terms 
of complex moduli and C, = 0 (equivalent to J, = =), the Maxwell model is 
obtained. 

following expressions: 
The real and imaginary terms of Eq. (13) can be easily separated, giving the 

J’ = Ju t (J, - Ju) cos (&)I[ 1 t 2(07)IP cos (pn/2) t ( O T ) ~ ~ ]  (14) 

J” = (J, - Ju) Sin (&)/ [ 1 -k 2(WTy COS @?7/2) t ( 0 7 ) 2 p ]  a’2, (15) 

with 

tan 0 = ( 0 T ) f l  sin (Pn/2)/ [ 1 t (07y cos (Pn/2)]. (16) 

The general applicability of an expression such as this to dynamic mechanical 
data of nonreacting polymeric materials has been previously demonstrated [ 4 ] .  
However, for reacting systems, a description of the kinetics of the system and 
their effects on the viscoelastic model are required before a complete descrip- 
tion is provided. 

Kinetic Model 

A variety of kinetic models may be utilized in describing the curing process 
of thermosetting systems [6,7,20]. The kinetics of the TGDDM/DDS epoxy 
system have in particular been successfully examined using nth-order kinetics 
accounting for the different reacting regions [6]. Accordingly, nth-order 
kinetics will be used in the development presented here. However, it should 
be noted that any appropriate kinetic expression may be used to  describe a 
given system. The differential equation describing nth-order kinetics is 

where X = the dimensionless extent of reaction 
k = the rate constant 
n = the reaction order 

Defining X =  0 at t = 0 gives the following integrated form of Eq. (17): 
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n =  1: ln(1 -*=-lit, (18) 

(19) n f  1: ln(1 - X ) =  [ I / ( l  -n)]  In [ l  +(n- i)kr]. 

This kinetic model may be used to describe the state of cure of the sample 
as a function of time. Thus, for the model development, the relationship be- 
tween the state of cure and the viscoelastic behavior must now be provided. 

Relating Kinetic and Viscoelastic Models 

In order to predict the viscoelastic behavior of the sample as a function of 
time, the appropriate kinetic model must be incorporated into the viscoelastic 
model. The viscoelastic model contains five parameters which may be depen- 
dent on the extent of reaction in the system: J,, Ju, a, 0, and 7. The unre- 
laxed modulus and, hence, the unrelaxed compliance do not appear to change 
significantly after gelation; therefore, it will be assumed constant. 

For systems which undergo significant chemical change during crosslinking, 
such as the epoxy system of this study, the retardation time increases with de- 
gree of cure [2 11 . According to rubber elasticity theory, the relaxed modulus, 
and thus the reciprocal of the relaxed compliance, should be linearly depen- 
dent on the crosslink density. However, the effect of changes in the relaxed 
compliance are small relative to the effect of changes in the retardation time 
except when the sample is relaxed. A state of relaxation is never achieved, 
however, since the sample resumes curing before its compliance nears the re- 
laxed value. For this reason, J, may be assumed constant to a first approxima- 
tion. It must be noted that his assumption is invalid for systems that do not 
experience large changes in relaxation/retardation times during cure. 

For simplicity, a and 0 will also be assumed independent of the state of 
cure. Although these assumptions cannot be expected to be observed in gen- 
eral, the effect of cure on the retardation time, 7, may be large enough to 
render charges in the other parameters insignificant. This approach is justi- 
fied empirically by the success of a similar approach in describing dielectric 
behavior of reacting systems [ 171. 

to be described kinetically. The approach taken here is based upon our pre- 
vious work in the development of a viscosity model for curing thermosets 
prior to the gel point [ 161. Based on molecular we@ considerations, the 
following expression for nth-order kinetics was obtained: 

With these assumptions, only one parameter, the retardation time, remains 

1 n p = l n p o  + [+/(n- I)] In [ l  +(n- l)kt], 
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238 DILLMAN AND SEFERIS 

where p = the viscosity of the curing system 
po = the initial viscosity 
G = a parameter accounting for the effects of chain entanglement 

From Eqs. (19) and (20), it can be seen that this is equivalent to 

PO/P = (1 -a". (2 1) 

Using these expressions and assuming proportionality between viscosity 
and retardation time leads to the following expressions: 

ln7=lnT0 t [a/@- l)] In [ l  +(n- l)kt], 

To/7=(1 -a", 
where 7 = the mean retardation time 

r0 = the mean retardation time at t = 0 

It should be noted that Eq. (22) should not be used for modeling postgelation 
dynamic mechanical data because it predicts a retardation time which increases 
without bound, while dynamic mechanical data show an asymptotic limit, here 
denoted as 7,. However, a full cure limit to the retardation time may be in- 
troduced by assuming that the material behaves as a composite of cured and 
uncured regions, and that it obeys a series addition approximation, a common 
assumption for heterogeneous systems [5, 111. With these assumptions, Eq. 
(22) may be expanded in the following way: 

1/7 = (1 - xy7, 4- x ) / 7 0 ,  (24) 

where 

X'=(1 -x)" 

This leads to the following expression: 

It should be noted that this expression reduces to Eq. (23) when 7, = =. 

retardation time as a function of time is obtained: 
When Eqs. (26) and (19) are combined, a generalized expression for the 
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In [ ( 1 / ~ ~  - l / ~ , ) / ( l / ~ -  l / ~ ~ ) ]  = [@/(n- l)] In [l +(n- l)kr]. (27) 

If the parameters are known, 7, at any given time, may be computed from 
Eq. (27). Once 7 is known, the complex compliance may be computed from 
Eqs. (13) through (16). This requires knowledge of nine parameters in the 
general case: J,, J,, r o ,  T,, a, P ,  a, n, and k, of which a, n, and k are insepa- 
rable for the isothermal experiments. In practice, J,, Ju, T,, and possibly a 
and P may be determined from dynamic experiments on fully cured samples. 

Analysis of DMA Data 

As was mentioned previously, the DMA data were taken with a Du Pont 
982 DMA. Because this instrument operates at  resonant frequency, kinetic 
analysis techniques which rely on the time at which a given feature in the dy- 
namic mechanical data is observed are prone to error introduced by changes 
in frequency between experiments and within the same experiment. The 
model presented here accounts explicitly for frequency, and therefore, may 
be applied to resonant as well as constant frequency data. Application of the 
model to resonant frequency data is somewhat more difficult, however, be- 
cause the frequency is dependent on the modulus, making the calculations 
iterative. 

The TGDDM/DDS system shows multiple relaxations. However, in the 
temperature and frequency range of the data taken in this work, only one 
transition, the a transition, has a significant effect. For this reason, the other 
transitions have been ignored. 

A nonlinear least-squares data-fitting scheme based upon the path of steep 
est descent method was used to fit the model to the isothermal dynamic 
mechanical data [22]. The sum of errors in the storage and loss compliance 
was used as the objective function, A comparison of the model to the data 
at 220°C is given in Fig. 1. The parameters giving the best fit are given in 
Table 2. 

The parameters shown in Table 2 exhibit some interesting trends with 
temperature. An analysis of the temperature dependence of the parameters 
is provided in the nonisothermal extension of the model [ 101. However, the 
influence of temperature on the parameters is examined here. 

The reaction rate constant, (n - l)k, appears to vary exponentially with 
temperature. If an Arrhenius dependence is assumed, the natural logarithm 
of the rate constant should vary linearly with reciprocal temperature. How- 
ever, here the rate constant is correlated strongly with the chain entangle- 
ment parameter, @/(n - 1). Thus, it is difficult to separate their effects during 
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240 DILLMAN AND SEFERIS 

TABLE 2. Model Parameters Generated by Minimization of Error in Storage 
and Loss Moduli 

~~ 

Temperature, "C 

Parameter 140 167 180 218 

(n - l)k, min-' 6.25E-3 8.19E-3 1.06E-1 1.45E- 1 

w n  - 1) 22.5 46.6 12.3 24.9 

a! 0.487 0.758 1.00 1.00 

P 0.594 0.497 0.375 0.280 

7 0 ,  s 8.71E2 8.87E0 7.74E-3 2.67E-4 

700, s 1.30E7 5.69E6 1.05E8 8.29E8 

J,, Pa-' : Average value = 2.76E-7 

J,, Pa-' : Average value = 1.26E-9 

the minimization process, particularly if n is close to 1. For this reason, it was 
determined that the quantity @k was less subject to randomness. An Arrhenius 
plot was constructed using In (Qk) as a function of l/T(Fig. 2). The plot a p  
pears linear with some scatter, again due to the probelm of separating the ef- 
fects of Q and k. The slope yields an activation energy of 17.3 kcal/mol. Table 
3 gives apparent activation energies for the TCDDM/DDS system obtained by 
this technique as well as differential scanning calorimetry and dielectric analy- 
sis. The value obtained here agrees favorably with those obtained using other 
techniques. 

The parameter a! appears to increase with temperature, reaching its upper 
limit of 1.0 at roughly 180°C, and appears to decrease with temperature. 
While the functionality of these changes is difficult to determine, it is suggested 
that, as a first approximation, a and p may be suitably modeled by a linear 
function of temperature with appropriate bounds. 

The initial retardation time, r0 ,  decreases with increasing temperature. If 
Andrade (Arrhenius type) behavior is valid, the initial retardation time should 
vary exponentially with reciprocal temperature [ 1,231. An Arrhenius plot 
of the initial retardation time is shown in Fig. 3. The data appear linear, indi- 
cating that for this system the temperature dependence of the retardation 
time may be modeled, in this case, by the Andrade equation. For other sys- 
tems a more complex approach, such as that of Williams, Landel, and Ferry, 
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1.4 

1.2 - 
1 -  

0.8 - 
0.6 - 
0.4 - 
0.2 - 

0 -  

-0.2 - 3 -0.4 - c - -0.6 - 
-0.0 - 

-1 - 
-1.2 - 
-1.4 - 
-1.6 - 
-1.8 - 

-2 ' I I I 1 I I I I 

0.002 0.0021 0.0022 0.0023 0.0024 

TABLE 3. Apparent Activation Energies (TGDDM/35 phr DDS) 

Technique E,, kcal/mol 
~~ ~ 

Dynamic mechanical analysis 

Differential scanning calorimetry [6] 

17.3 

16.7 

Dielectric [ 171 12-13 
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FIG. 3. Arrhenius plot of In ( r 0 )  as a function of 1/T for TGDDM/35 
phr DDS sample. 

may be required to account for the temperature dependence of the initial re- 
tardation time [3]. 

The final retardation time, T,, shows complex temperature behavior. It 
initially decreases with temperature followed by an increase with temperature. 
This can be explained by recalling that the final degree of cure attained is de- 
pendent on cure temperature [24]. Thus, there are competing effects: a ten- 
dency for retardation time to decrease with increasing temperature at a given 
state of cure, and the tendency for the system to reach a higher degree of cure 
at higher temperatures, increasing the retardation time. 

Neither the relaxed nor the unrelaxed compliance shows any trends with 
temperature beyond apparent scatter of the data. Rubberlike elasticity theory 
predicts a decrease in the relaxed compliance with increasing temperature, but 
this effect is small over the range of temperature and compliance covered by 
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the data. Thus, both the relaxed and unrelaxed compliances may be assumed 
to be temperature independent within the accuracy of the model. 

Predicted Frequency Effects 

Once the model parameters had been determined, the model was used to 
predict frequency effects on the results of dynamic mechanical tests during 
cure. Plots of the effects on storage and loss moduli are shown in Fig. 4. It 
should be noted that the final value of the storage modulus increases with fre- 
quency and that the position of the loss peak shifts to earlier times with in- 
creasing frequency. As can be seen, if these predictions approximate a real 
system, failure to account for frequency effects when analyzing dynamic 
mechanical data for kinetic parameters could result in serious error. 

Cole-Cole Type Plots 

Since Eqs. (14x17) are parametric equations in 7, a plot of J” vs J’ will 
fall on a single curve, irrespective of frequency. Varying the frequency only 
varies the position along the curve observed for a given retardation time. Simi- 
lar plots are commonly used in the analysis of dielectric data and are known 
as Cole-Cole plots [ 1 J . Recently Cole-Cole plots have been shown to be effec- 
tive tools in the analysis of dynamic mechanical data [25 J . A typical Cole- 
Cole type plot for the isothermal data is shown in Fig. 5. If a, 0, Ju, and Jr 
are independent of temperature, then the J” vs J’ curve should be indepen- 
dent of temperature also. Unfortunately, a and 0 are strongly temperature 
dependent, which results in a family of curves. However, useful information 
may be extracted from the plots o f f ’  VSJ’. For example, the parameters a, 
0, J,, and J, may be extracted from the Cole-Cole type plot by using graphi- 
cal or numerical techniques [ 171 . Table 4 gives parameters obtained from 
least-squares analysis of the Cole-Cole plots. a, 0, and J,  agree well with the 
parameters in Table 2 obtained by numerical analysis of the data. Jr, how- 
ever, is significantly different. This is a reflection of the model’s relative 
insensitivity to the value of the relaxed modulus, particularly at lower tem- 
peratures where the modulus remains substantially higher than Jr through- 
out the course of the cure. 

CONCLUSIONS 

A model has been developed that allows the kinetic analysis of dynamic 
mechanical data and demonstrated on the TCDDM/DDS epoxy system. 
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FIG. 4. Model predictions of effect of frequency on dynamic mechanical 
data of TGDDM/35 phr DDS plaque curing at 218OC. (a) Storage modulus. 
(b) Loss modulus. 
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FIG. 5. Cole-Cole plot of loss compliance as a function of storage compli- 
ance for TGDDM/35 phr DDS cured at 2 18OC. 

TABLE 4. Viscoelastic Parameters Obtained from Analysis of Cole-Cole 
Diagrams 

Temperature, "C 

Parameter 140 167 180 218 

a 0.408 0.768 0.984 1.000 

P 0.644 0.475 0.287 0.249 

J,, Pa-' 5.11E-7 6.21E-6 5.OOE-6 1.54E-7 

J,, Pa-' 1.23E-9 1.37E-9 9.9 1E- 10 1.21E-9 
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The model provides activation energies consistent with those obtained by 
other techniques of kinetic analysis. 

This work has also demonstrated that the analogy between dielectric re- 
laxation and viscoelastic relaxation of reacting systems may be exploited to 
develop a modeling methodology applicable to both. Furthermore, the use 
of Cole-Cole plots of loss compliance as a function of storage compliance for 
reacting systems can provide useful information. 

modeling of the complete dynamic mechanical behavior of a reacting system, 
rather than a single function. In addition, the viscoelastic model accounts ex- 
plicitly for experimental frequency, thereby providing kinetic parameters 
which are independent of the frequency at which the data were taken. This 
allows the use of data taken at one frequency to be used to predict the behavior 
of the system at any other frequency. 

The model presented here is a first step in the understanding of the effects 
of kinetic processes on the viscoelastic behavior of polymeric materials. Such 
understanding is necessary for the analysis of the mechanical properties of 
both neat polymers and composites whenever these properties are influenced 
by time-dependent changes in the system. 

The model presented here includes a viscoelastic component that allows the 
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